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1. BACKGROUND 

 
The Great Plains of North American has experienced a significant increase in woodland cover 

over the last 200 years.  This encroachment of woodlands into grasslands, as well as the “thicketization” of 
savannas has been observed worldwide (Archer et al., 1995).  Several reasons have been offered to explain 
this transformation.  The traditional view holds that changes in land management are the cause, operating 
through several modes of disturbance.  A primary mode is a reduction in burn frequency, coupled with 
increased grazing and tree planting.  Burning tends to favor native prairie species (suppressing 
encroachment by woodland species), while grazing tends to select for the unpalatable woodland species 
(Reich et al., 2000). Under these conditions, species introduced as shelterbelts and windrows can spread 
into prairie ecosystems.  A secondary mode of disturbance is the abandonment of agricultural land, which, 
coupled with fire suppression, favors the development of woodland cover.  Climatic factors have also been 
proposed.  For example, the replacement of C4 grasses by C3 shrubs in North America inferred over the last 
200 years could either be due to systems that were established at the end of the “little ice age” and only 
marginally supported climatically at the time of settlement (Neilson, 1986), or due to post-industrial CO2 
fertilization (Idso, 1992).  The latter proposition is difficult to support, however.  Even though the global 
nature of encroachment supports the fertilization hypothesis, a number of alternative explanations are 
available (), undermining this point of view. 

The implication of these changes is still poorly understood.  A simple view holds that the 
transformation of grassland to woodland increases carbon sequestration. Indeed, the expansion and 
densification of woodlands has been proposed as an explanation for up to 50% of the total US carbon sink 
associated with land cover changes (Houghton et al., 1999).  This transformation has been implicated in 
changes in meteorological and climatic patterns within the Great Plains, resulting from alterations to water 
and energy fluxes between the surface and the atmosphere, as well disturbances to the carbon and nitrogen 
exchange cycles as grasslands give way to wooded cover.  Although carbon sequestration is an important 
tool for reducing greenhouse gases, this sequestration occurs at the expense of soil carbon (Sage et al., 
1999) as grasslands are transformed.  In areas prone to droughts and frequent fires, the resilience of carbon 
stored in tree biomass (wood) as compared to soil carbon is questioned. 

In an attempt to monitor this encroachment, it is important to map the distribution of species that 
may indicate the early onset of grassland-woodland transformation. One such species is the eastern red 
cedar (Juniperus virginiana).  Extensive throughout the eastern and central US, this juniper species has 
spread extensively into the central Great Plains.  Because it’s drought resistance, highly adaptive 
physiology and extensive root system, the eastern red cedar has been widely used to control soil erosion 
and to reduce the desiccating effects of wind.  Introduced as windrows and shelterbelts, the species will 
usually give way to climax deciduous and conifer species.  Although considered shade intolerant, eastern 
red cedar can still flourish under lower- to mid-density deciduous stands, due to it’s low capacity for water 
loss and ability to photosynthesize adequately during leaf-off overstory conditions.  The species is highly 
sensitive to fire, it’s primary control, but as fire is suppressed the juniper can spread from shelterbelts into 
the surrounding pastureland and abandoned cropland.  Once established in these new areas, they are usually 
replaced by more fire-tolerant hardwoods and pines, although they can occasionally outlive competing 
hardwoods through allelopathy and a highly competitive physiology in marginal soil and climatic 
conditions. 
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Mapping the eastern red cedar throughout the Great Plains using remote observation techniques 
can be problematic for several reasons.  First, in the early stages of encroachment, the species is either 
hidden under deciduous overstory, or expressing itself only through isolated, patchy occurrences in open 
areas.  Its spectral signature is not always distinct from other conifer species as viewed by lower-
dimensional multispectral instruments, although throughout much of the plains, there are few other conifers 
co-occurring with the juniper in large numbers.  However, one of its prime expansion corridors is along the 
riparian systems that cut west-to-east across the central plains. At some point, the eastern red cedar can co-
occur with western conifers, such as the ponderosa pine.  This is the case along the Niobrara River in 
Nebraska, a unique riparian system where eastern hardwoods can intermix with western conifers.  The 
Niobrara and other rivers are important conduits to juniper expansion to the west, but present all the 
problems associated with remote detection: patchiness, overstory obscuration and spectral confusion.  The 
problem of remote detection is approached here using high spectral resolution to improve spectral 
discrimination, and leaf-on, leaf-off data acquisitions at high spatial resolution to identify the eastern red 
cedar under varying conditions of background spectra and overstory obscuration.  The primary instrument 
for this study is the Advanced Visible and Infrared Imaging Spectrometer (AVIRIS) coupled with field 
observations of juniper stands. 

 

2. AVIRIS DATA COLLECTION AND PREPARATION 

 
The geographic focus of this study is the Niobrara Valley Nature Preserve in north central 

Nebraska, owned and managed by The Nature Conservancy.  The preserve includes the intermixed riparian 
woodland described above, as well as extensive tracts of the Nebraska Sand Hills to the south of the river.  
Two low-altitude (15,500 ft above mean terrain) Twin Otter AVIRIS acquisitions occurred in 1999: July 22 
and November 11.  The first acquisition captures the grassland and woodlands under conditions of 
maximum green cover (the native prairie grasses are dominant warm-season), while the latter captures 
senesced grasses and leafless hardwood stands.  Over 600 field control points were measured over the 
preserve to include a variety of cover types: grasslands, woodland, shrub (primary sumac), and bare soil.  
The woodland class was further subdivided into deciduous, conifer-ponderosa pine, conifer-juniper and 
mixed classes.  These field points were located to an accuracy of around 2 meters and used to train the 
classification described below. 

Although the AVIRIS data were geometrically corrected before delivery, the inherent errors were 
sufficiently large to require further correction.  Both the scenes were re-transformed using a standard US 
Geological Survey digital orthophoto quadrangle (DOQ) as control.  Although the scene-to-scene 
accuracies were high after correction, the DOQ’s intrinsic locational uncertainty of around 6 meters must 
be considered in light of the AVIRIS image’s 2.7 meter resolution and the locational accuracies of the field 
control used in the classification.  These problems come into play during the classification accuracy 
assessment described later.  Using field spectroscopy measurements, the radiance-calibrated imagery were 
corrected for the atmosphere and converted to (isotropic) surface reflectance.  Minimum noise fraction 
(MNF) transformations were applied to both data sets, and an MNF threshold of 2.0 was used to retain 
MNF components for classification. 

 

3. CLASSIFICATION METHODOLOGY 

 
Two supervised classification methods were used, one using matched filtering for each cover type 

under investigation, and the other using decision trees (Friedl et al., 1999).  For the matched filtering 
approach, regions of interest (ROIs) were extracted from the imagery using the global positioning system 
(GPS) locations acquired during the field survey.  Image spectra from these ROI’s were used as reference 
spectra for the matched filter algorithm, and a matched filter image was computed for each of the cover 
types under study.  The performance of this approach was used by observing the value of the matched filter 
values for the different classes at control GPS field survey locations withheld from the training set locations 
for the purpose of validation.  The means by which the performance of this method is measured is 
described in the next section.  The matched filtering approach for the November dataset was not complete 
at this writing and is not included here. 



The decision tree approach used the C5.0 univariate decision tree algorithm.  Decision tree 
classifiers have become increasingly popular for several reasons.  First, they are non-parametric, requiring 
no prior assumptions regarding probability density functions of a given data ensemble.  Also, they are 
considered to be relatively robust with respect to nonlinear and noisy interrelationships between features 
expressed in a given data set (Friedl et al., 1999).  The decision tree algorithm works by computing a metric 
known as the information gain ratio, a measure of the reduction in entropy produced by subdividing 
(“splitting”) data into subsets based on feature vector decision thresholds, based on a given set of training 
signatures.  The “tree” nomenclature describes the morphology of the splitting process: recursive binary 
decisions resulting in a number of subdivision. The final tree configuration is achieved by maximizing the 
information gain threshold at each node (binary decision) in the tree.  Performance of the classification is 
based on standard classification validation procedures. 

The July 22 classification was described previously and is synopsized in the next section.  For the 
classification of the November 11 data set, two classification schemas were used.  The first was for a 
general classification scheme dividing the image into 5 basic types (shadow, bare, water, woody, and 
grass), and the second was a woody-specific division to determine which types of woody species were 
present (cedar, pine, deciduous, shrub, and mixed (dec. and cedar)).  The desired separations were run 
through the C5.0 decision tree to determine the accuracy and usefulness of the separation.  The following 
separations were run: general classification, cedar/other/mixed, woody/other separation. Cross-validation 
was used to estimate error rates of various landcovers with different decision tree parameters.  Boosted 
decision trees () produced the most useful results.  When the results were determined to be meaningful, the 
decision tree was run on the entire 32-band MNF image, since it had been trained by the points.  This 
produced classified images and confidence maps. 

Due to lower accuracy than expected in some of the images, it was decided to aid improve 
classification using results from the July classification. Only the woody class was used from the July result 
as a pre-stratification for the November classification.  The mixed class from the July result was excluded 
to reduce training errors.  The training points were again used to estimate the ability of decision tree to 
classify the image using cross-validation.  The decision tree was then run spatially on the entire 32-band 
November MNF image.  The corresponding woody points for both the leaf on and leaf off images were 
matched up and run through decision tree in an attempt to improve our woody separation.  This decision 
tree was also run spatially on both images and a composite was produced.  

A final classification was then produced using a decision model combining the aforementioned 
results.  The general classification was used for the classes shadow, bare, water, and grass.  If the leaf-on 
result called a pixel deciduous and the leaf-off called it cedar or mixed, it was put in a mixed class.  If a 
pixel was deciduous in the leaf-on and pine in the leaf-off, it was also added to the mixed class.  Of the 
remaining pixels, if it was deciduous in the leaf on, it was given a deciduous class.  If it was cedar in leaf-
off, it was classified as cedar.  Likewise, if it was pine or shrub in leaf off, these classes were created and 
named correspondingly.  If a pixel was classified as mixed in the leaf off, it was added to the mixed class.  
The remaining pixels were classified according to how they were classified in the on and off composite 
image. (Fig. 1)   
  

4. RESULTS 

 
The results from the July 22 classification, reported previously reported that both the matched 

filter and decision tree approaches were able to discriminate between cedar from other cover types with 
accuracies of about 85%.   

The cross-validation step in the decision tree provides statistics in the form of a confusion matrix 
with which an accuracy assessment can be done.  The matrices from all of the different decision tree 
outputs were combined using area weighting to produce an accuracy assessment for each class in the final 
image.  The overall accuracy of the classification is 84 %.  The shadow and water classes had the highest 
accuracies, 94 % and 93 %, respectively.  The bare and grass classes had accuracies of 83% and 89%, 
respectively.  Cedar was accurately classified 52% of the time, while the mixed class was accurately 
classified 35% of the time.  Coniferous trees were accurately classified 46% of the time.  Deciduous trees 
and shrubs were accurately classified 64% and 62% of the time, respectively.   The following chart shows 
the breakdown of the above: 

 



 
 

 
Table 1: decision tree results 

 
class % accuracy 

Shadow 94 
Water 93 
Bare 83 
Grass 89 
Cedar 52 

Coniferous 46 
Deciduous 64 

Shrub 62 
Mixed 35 
Overall 84 

 
 
 

5. DISCUSSION 
 

The low cedar classification accuracy for the November 11 acquisition is the result of several 
complicating factors.  A primary factor is the overall locational uncertainties in the surveyed control points 
and the imagery used for analysis (including the reference DOQ).  Because of the patchiness of the exposed 
juniper stands and the 2.7 m resolution of the Twin Otter AVIRIS data, small locational errors in field 
surveys and imagery all could lead to large errors in a supervised, multi-date classification strategy.  
Another influence is the general illumination conditions of the November 11 overflight: low sun 
(shadowing, anisotropic reflectance effects).  Also, attempts to measure through obscuring hardwood 
canopies may be somewhat ambitious, even under leaf-off conditions.  Finally, the quality of the field 
observations must be considered: in a very patchy environment, what is considered “quality” control?  
Stands of pure juniper, large enough to be spectrally unambiguous, are extremely rare. 

Methods for mitigating these factors include the use of precise control for image registration, more 
accurate field measurements and better examples of “target” spectral signatures for classification.  Due to 
the reasons mentioned above, pure spectral signatures may be unobtainable from the image, so strategies 
employing the use of reference field spectra along with unmixing strategies should be pursued further. 
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Figure 1. 

Classification results from the univariate decision tree for both dates. 


